Abstract
Ethylene formation was studied in 5- to 6-d-old Chenopodium rubrum seedlings under the following light regimes: continuous light (CL), continuous darkness (CD), and alternating light/darkness (12 h of each). No significant regular oscillations in ethylene formation were found in either the CL or CD groups. In the light/dark regime, pronounced diurnal fluctuations in ethylene formation were observed. Activity of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase was transiently increased on transfer from light to dark and vice versa. In CL, ACC oxidase activity did not change significantly, whereas in CD, it decreased continuously after the initial increase. The in vivo levels of ACC and N-malonyl-ACC (MACC) were constant for the first few hours of darkness, then decreased dramatically, but increased again in the light. In constant darkness, the level of ACC displayed endogenous rhythm, with minimum values at h 12 and 44, and a maximum value at h 32 to 36. The level of MACC in both shoots and roots decreased in the CD group until h 12, and then remained constant until h 30 before decreasing continuously. We conclude that the photoperiodic regime affects both ACC and MACC levels, as well as the conversion of ACC to ethylene. Correlation of the described changes in ethylene formation to photoperiodic flower induction is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.