Abstract

The authors present an analytical model to predict the model parameters of a dither-motor structure in a ring laser gyroscope in which the piezoelectric sensor and actuator are employed as driving mechanisms to avoid the problem of so-called lock-in effects. It is shown that the natural frequency of a dither motor is strongly influenced by: (1) the inertia and stiffness of piezoelectric elements and bonding layers, (2) the location of piezoelectric elements, and (3) the interaction between structural vibration and piezoelectric actuation. Conventionally. piezoelectric elements are used for sensor and actuator independently. A technique for utilizing each of the piezoelectric elements concurrently for dither rate sensing and dither motion actuation is also developed. Experimental results show that the system performance and reliability can be significantly increased by accurately predicting the fundamental structural frequency and by implementing the concurrent sensing/actuating technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.