Abstract

BackgroundMultipotent mesenchymal stem/stromal cells (MSC) including adipose-derived stromal cells (ADSC) have been successfully applied for cardiovascular diseases treatment. Their regenerative potential is considered due to the multipotency, paracrine activity and immunologic privilege. However, therapeutic efficacy of autologous MSC for myocardial ischemia therapy is modest. We analyzed if ADSC properties are attenuated in patients with chronic diseases such as coronary artery disease (CAD) and diabetes mellitus type 2 (T2DM).Methods and resultsADSC were isolated from subcutaneous fat tissue of patients without established cardiovascular diseases and metabolic disorders (control group, n = 19), patients with CAD only (n = 32) and patients with CAD and T2DM (n = 28). ADSC phenotype (flow cytometry) was CD90+/CD73+/CD105+/CD45−/CD31− and they were capable of adipogenic and osteogenic differentiation. ADSC morphology and immunophenotype were similar for all patients, but ADSC from patients with CAD and T2DM had higher proliferation activity and shorter telomeres compared to control patients.ADSC conditioned media stimulated capillary-like tubes formation by endothelial cells (EA.hy926), but this effect significantly decreased for patients with CAD (p = 0.03) and with CAD + T2DM (p = 0.017) compared to the control group. Surprisingly we revealed significantly higher secretion of some pro-angiogenic factors (ELISA) by ADSC: vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) for patients with CAD and HGF and placental growth factor (PlGF) for patients with CAD + T2DM. Among angiogenesis inhibitors such as thrombospondin-1, endostatin and plasminogen activator inhibitor-1 (PAI-1) level of PAI-1 in ADSC conditioned media was significantly higher for patients with CAD and CAD + T2DM compared to the control group (p < 0.01). Inhibition of PAI-1 in ADSC conditioned media by neutralizing antibodies partially restored ADSC angiogenic activity (p = 0.017).ConclusionsADSC angiogenic activity is significantly declined in patients with CAD and T2DM, which could restrict the effectiveness of autologous ADSC cell therapy in these cohorts of patients. This impairment might be due to the disturbance in coordinated network of pro- and anti-angiogenic growth factors secreted by ADSC. Changes in ADSC secretome differ between patients with CAD and T2DM and further investigation are necessary to reveal the MSC-involved mechanisms of cardiovascular and metabolic diseases and develop novel approaches to their correction using the methods of regenerative medicine.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-014-0337-4) contains supplementary material, which is available to authorized users.

Highlights

  • Cardiovascular diseases are the most frequent causes of death globally

  • adipose-derived stromal cells (ADSC) angiogenic activity is significantly declined in patients with coronary artery disease (CAD) and Type 2 diabetes mellitus (T2DM), which could restrict the effectiveness of autologous ADSC cell therapy in these cohorts of patients

  • This impairment might be due to the disturbance in coordinated network of pro- and anti-angiogenic growth factors secreted by ADSC

Read more

Summary

Introduction

Cardiovascular diseases are the most frequent causes of death globally. The prevalence of metabolic disorders, first of all diabetes mellitus type 2, is similar to epidemic and greatly increases every year. Most of cardiac pathologies as well as T2DM result in permanent cardiac tissue damage followed by heart failure [1,2,3,4]. There is a group of patients with refractory angina and heart failure that are incurable despite advances in medical treatment and surgical and percutaneous interventions. Multipotent mesenchymal stem/stromal cells (MSC) including adipose-derived stromal cells (ADSC) have been successfully applied for cardiovascular diseases treatment. Their regenerative potential is considered due to the multipotency, paracrine activity and immunologic privilege. We analyzed if ADSC properties are attenuated in patients with chronic diseases such as coronary artery disease (CAD) and diabetes mellitus type 2 (T2DM)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.