Abstract

Reactive oxygen species (ROS) and calcium (Ca2+), two crucial intracellular signaling molecules, have been reported to play important roles in chlorophyll biosynthesis. In this study, we aimed to investigate whether disturbance of chlorophyll synthesis affects chloroplast ROS and Ca2+ homeostases. Chlorophyll biosynthesis was inhibited at the Mg branch by virus-induced gene silencing (VIGS) of CHLI gene encoding the Mg chelatase CHLI subunit in pea (Pisum sativum). Subsequently, ROS and intracellular free Ca2+ concentration ([Ca2+]i) in these chlorophyll-deficient pea plants were evaluated by histochemical and fluorescent staining assays. The results showed that the superoxide anion and hydrogen peroxide were predominantly generated in chloroplasts of the yellow leaves of pea VIGS-CHLI plants. The expression of genes encoding chloroplast antioxidant enzymes (CuZn-superoxide dismutase, ascorbate peroxidase, glutathione reductase, phospholipid glutathione peroxidase, peroxiredoxin and thioredoxins) were also decreased in the leaves of VIGS-CHLI plants compared with the control plants. Additionally, the [Ca2+]i were significantly reduced in the yellow leaves of VIGS-CHLI plants compared with the green leaves of VIGS-GFP control plants. The expression of genes encoding Ca2+ signaling related proteins (thylakoid Ca2+ transporter, calmodulins and calcineurin B-like protein) was down-regulated in yellow VIGS-CHLI leaves. These results indicate that inhibition of chlorophyll biosynthesis at the Mg branch by silencing CHLI affects chloroplast ROS homeostasis and Ca2+ signaling and down-regulates the expression of ROS scavenging genes and Ca2+ signaling related genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.