Abstract
This paper provides a fresh perspective on the representation of distributive bilattices and of related varieties. The techniques of natural duality are employed to give, economically and in a uniform way, categories of structures dually equivalent to these varieties. We relate our dualities to the product representations for bilattices and to pre-existing dual representations by a simple translation process which is an instance of a more general mechanism for connecting dualities based on Priestley duality to natural dualities. Our approach gives us access to descriptions of algebraic/categorical properties of bilattices and also reveals how ‘truth’ and ‘knowledge’ may be seen as dual notions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.