Abstract
We study a permutation procedure to test the equality of mean vectors, homogeneity of covariance matrices, or simultaneous equality of both mean vectors and covariance matrices in multivariate paired data. We propose to use two test statistics for the equality of mean vectors and the homogeneity of covariance matrices, respectively, and combine them to test the simultaneous equality of both mean vectors and covariance matrices. Since the combined test has composite null hypothesis, we control its type I error probability and theoretically prove the asymptotic unbiasedness and consistency of the combined test. The new procedure requires no structural assumption on the covariances. No distributional assumption is imposed on the data, except that the permutation test for mean vector equality assumes symmetric joint distribution of the paired data. We illustrate the good performance of the proposed approach with comparison to competing methods via simulations. We apply the proposed method to testing the symmetry of tooth size in a dental study and to finding differentially expressed gene sets with dependent structures in a microarray study of prostate cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.