Abstract

Voltage control plays an important role in the operation of electricity distribution networks, especially with high penetration of distributed energy resources. These resources introduce significant and fast varying uncertainties. In this paper, we focus on reactive power compensation to control voltage in the presence of uncertainties. We adopt a chance constraint approach that accounts for arbitrary correlations between renewable resources at each of the buses. We show how the problem can be solved efficiently using historical samples analogously to the stochastic quasi-gradient methods. We also show that this optimization problem is convex for a wide variety of probabilistic distributions. Compared to conventional per-bus chance constraints, our formulation is more robust to uncertainty and more computationally tractable. We illustrate the results using standard IEEE distribution test feeders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.