Abstract

BackgroundMesenchymal stem cells (MSCs) show therapeutic efficacy in many different age-related degenerative diseases, including Alzheimer’s disease. Very little is currently known about whether or not aging impacts the transplantation efficiency of MSCs.MethodsIn this study, we investigated the distribution of intravenously transplanted syngeneic MSCs derived from young and aged mice into young, aged, and transgenic APP/PS1 Alzheimer’s disease mice. MSCs from male donors were transplanted into female mice and their distribution pattern was monitored by PCR using Y-chromosome specific probes. Biodistribution of transplanted MSCs in the brains of APP/PS1 mice was additionally confirmed by immunofluorescence and confocal microscopy.ResultsFour weeks after transplantation into young mice, young MSCs were found in the lung, axillary lymph nodes, blood, kidney, bone marrow, spleen, liver, heart, and brain cortex. In contrast, young MSCs that were transplanted into aged mice were only found in the brain cortex. In both young and aged mouse recipients, transplantation of aged MSCs showed biodistribution only in the blood and spleen. Although young transplanted MSCs only showed neuronal distribution in the brain cortex in young mice, they exhibited a wide neuronal distribution pattern in the brains of APP/PS1 mice and were found in the cortex, cerebellum, hippocampus, olfactory bulb, and brainstem. The immunofluorescent signal of both transplanted MSCs and resident microglia was robust in the brains of APP/PS1 mice. Monocyte chemoattractant-1 levels were lowest in the brain cortex of young mice and were significantly increased in APP/PS1 mice. Within the hippocampus, monocyte chemoattractant-1 levels were significantly higher in aged mice compared with younger and APP/PS1 mice.ConclusionsWe demonstrate in vivo that MSC biodistribution post transplantation is detrimentally affected by aging and neuronal health. Aging of both the recipient and the donor MSCs used attenuates transplantation efficiency. Clinically, our data would suggest that aged MSCs should not be used for transplantation and that transplantation of MSCs into aged patients will be less efficacious.

Highlights

  • Mesenchymal stem cells (MSCs) show therapeutic efficacy in many different age-related degenerative diseases, including Alzheimer’s disease

  • As described in the Methods, Y-chromosome PCR analysis was performed to assess the biodistribution of MSCs in isolated organs and tissues post mortem

  • Following a tail-vein injection, young transplanted MSCs were found in the lung, axillary lymph nodes, blood, kidney, bone marrow, spleen, liver, heart, and brain cortex of young mice (Fig. 1a)

Read more

Summary

Introduction

Mesenchymal stem cells (MSCs) show therapeutic efficacy in many different age-related degenerative diseases, including Alzheimer’s disease. The success of a given MSC transplantation therapy may depend on a variety of factors, such as whether or not they were pre-incubated with protective compounds [11, 12] or under specific environmental conditions [13]. Another key factor underlying MSC transplantation efficiency may be the ability of MSCs to localize, or migrate, into target tissues of interest [14]. Twenty-four hours after intravenous transplantation, MSCs are mostly found in the lung, liver, kidney, skin, thymus, lymph node, and gut with 1–2.7% of transplanted cells homing to these different organs in young animals [20]. Human adipose-derived stem cells had transmigrated to the gastrointestinal tract, kidney, liver, and bladder of all injected mice [22]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.