Abstract

Microtubule associated proteins are a heterogeneous group of proteins that have been implicated in regulating microtubule stability. They play an important role in the organisation of the neuronal cytoskeleton during neurite outgrowth, plasticity and regeneration. The fish visual system presents a considerable degree of plasticity. Thus, the retina grows continually throughout life and the optic nerve regenerates after crush. In the present study, we compared the distribution of the microtubule associated protein 1B in its phosphorylated form (MAP1B-phos) in the normal adult fish visual system with that observed during optic nerve regeneration after adult optic nerve crush using a specific monoclonal antibody mAb-150. Expression of MAP1B-phos was observed in some ganglion cell somata and in developing, growing axons within the control optic nerve. Few immunoreactive terminals were seen in the control optic tectum. After optic nerve crush, we found additional MAP1B-phos expression in regenerating axons throughout the visual system. Our results demonstrate that MAP1B-phos is present in growing and regenerating axons of fish retinal ganglion cells, which suggests that the phosphorylated form of MAP1B may play an important role in developmental and regeneration processes within the fish central nervous system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.