Abstract

We have analyzed the distribution of the endoplasmic reticulum (ER) within isolated rat skeletal muscle flexor digitorum brevis myofibers. Studies with confocal microscopy indicated that the resident ER proteins displayed a perinuclear and cross-striated distribution that extended over the I band areas. Interestingly, two discrete distribution patterns were observed when different receptor or viral marker proteins were blocked in the ER. Accordingly, the vesicular stomatitis virus G protein that lost its efficient export through the Golgi apparatus during myogenesis preferentially marked the A-I junctional areas. The proteins that retained their Golgi processing after myogenesis, on the contrary, concentrated around the myonuclei and over the Z lines. Furthermore, the ER exit site marker sec23 located to Z lines but not to A-I junctions. To analyze the ultrastructural organization of the ER, we infected myofibers with recombinant virus expressing KDEL-tagged peroxidase that is translocated into the ER. With transmission electron microscopy, peroxidase activity was found in perinuclear and Z line-flanking tubular structures, but also within the terminal cisternae of the sarcoplasmic reticulum. The translocon-associated protein exhibited a similar localization. Taken together, the terminal cisternae contained unevenly distributed rough ER structures apparently lacking the export function. The exporting ER comprised perinuclear and Z line-flanking structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.