Abstract

Repeating earthquakes (REs) are sequences of events that have virtually identical waveforms and are interpreted to represent fault asperities driven to failure by loading from aseismic creep on the surrounding fault surface at depth. To investigate the postseismic deformation after the 1984 M6.2 Morgan Hill earthquake, we identify RE sequences occurring on the central Calaveras fault between 1984 and 2005 using a combination of cross-correlation and spectral coherence techniques. Both the accelerated slip transients due to the earthquake as well as the return to interseismic background creep rates can be imaged from our dataset. A comparison between the regions of the fault that ruptured coseismically and the locations of the REs show that REs preferentially occur in areas adjacent to the coseismic rupture. Using calculated RE-derived subsurface slip distributions at 6 months and 18 months after the mainshock, we predict surface electronic distance meter (EDM) line length changes between stations near the Morgan Hill rupture area. The RE-derived slip model underpredicts a subset of the observed line-length changes. Inclusion of transient aseismic slip below the seismogenic zone is needed to better match the measured surface deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.