Abstract

A simulation model is presented for the distribution and consumption of O2 in infected cells of soybean root nodule central tissue. It differs from earlier models in closer adherence to observed structure and embodies new morphometric data about the distribution of > 12,000 mitochondria per cell and about the geometry of the gas-filled intercellular spaces near which the mitochondria are located. The model cell is a rhombic dodecahedron and O2 enters only through interfaces (totalling 26% of the cell surface) with 24 gas-filled intercellular spaces. These spaces are located at the edges of each rhombic face of the cell, forming an interconnected network over the cell suface. Next, O2 is distributed through the cytoplasm by a leghaemoglobin-facilitated diffusive process, initially between the mitochondria and amyloplasts in the outer layers of the cell and then between > 6,000 symbiosomes (each containing 6 bacteroids) towards the central nucleus. The symbiosomes and mitochondria consume O2, but impede its diffusion; all O2 entering symbiosomes is considered to be consumed there. For the calculations, the cell is considered to consist of 24 structural units, each beneath one of the intercellular spaces, and each is divided into 126 layers, 0.2 μm thick, in and through which O2 is consumed and diffused. Rates of consumption of O2 and of N2 fixation in each diffusion layer were calculated from previously-established kinetics of respiration by mitochondria and bacteroids isolated from soybean nodules and from established relationships between bacteroid respiration and N2 fixation. The effects of varying the O2-supply concentration and the concentration and type of energy-yielding substrates were included in the simulations. When the model cell was supplied with 0.5 mM malate, mitochondria accounted for a minimum of 50% of the respiration of the model cell and this percentage increased with increased concentration of the O2 supply. Gradients of concentrations of free O2 dissolved in the cytoplasm were steepest near the cell surface and in this location respiration by mitochondria appeared to exert a marked protective effect for nitrogen fixation in layers deeper within the cell. Estimates of N2 fixation per nodule, calculated from the model cell, were similar to those calculated from field measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.