Abstract

The choline and ethanolamine phosphatides derived from isolated rat livers during perfusion with 75 percent deuterated water (Kuksis, A., Myher, J.J., Marai L., Yeung, S.K.F., Steiman, I. & Mookerjea, S. (1975) Can. J. Biochem. 53, 509-518) were resolved into molecular species by argentation thin-layer chromatography. The time course of percentage replacement of the newly synthesized fatty acids in each molecular species was determined by gas chromatography with mass spectrometry. The results confirmed the earlier postulated differential utilization of palmitic and stearic acids in glycerolipid biosynthesis as well as supported the hypothesis of a precursor-product relationship between the oligoenoic and tetranoic species of both phosphatides. Calculations of half-lives gave values of 14-19 h for palmitoyl oligoenes, 40-50 h for palmitoyl tetraenes, and 22-28 h for palmitoyl hexaenes of both choline and ethanolamine phosphatides. The corresponding stearoyl species had half-lives which ranged from 89 to 200 h. Evidence was obtained for a metabolic heterogeneity among subsets of molecular species recognized on the basis of combinations of new and old glycerol and fatty acids in the same glycerolipid molecule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.