Abstract

An important subgroup of adhesion molecules is the superfamily of cadherins, which takes part in cell recognition and differentiation during development. To our knowledge only one study describing N-cadherin expression in developing human brain has been performed so far. Our aim is to identify N-cadherin expression to establish a relationship between its expression and function in human cerebral cortex during prenatal development. In the present study, localization and intensity of N-cadherin was investigated in developing cerebral cortex. Fetuses from spontaneous abortions (n=13) were obtained from first, second, and third trimesters. Western blot analysis revealed three bands and the third trimester samples showed the strongest bands for N-cadherin. Cell processes, axon bundles, and some of the developing neurons revealed immunoreactivity for N-cadherin throughout pregnancy. The immunoreactivity increased in the developing neocortex and expanded from the ventricular layer toward the marginal zone as development progressed. Moreover, the immunoreactivity was strong in vascular endothelium during all three trimesters. We conclude that N-cadherin is dynamically related to the organization of cerebral cortex layers during prenatal development. The dynamic expression pattern implicates N-cadherin as a potential regulator of cell migration, axon extension and fasciculation, the establishment of synaptic contacts, and neurovascular angiogenesis in the developing human cerebral cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.