Abstract

Historical discharges of mercury (Hg) to Onondaga Lake, New York, have resulted in elevated Hg concentrations in lake fishes. In 1990, a remedial investigation and feasibility study (RI/FS) was initiated to evaluate problems related to Hg and other hazardous substances in the lake. As part of the RI/FS, the distribution of Hg in the aquatic food web was determined to provide input to a site-specific model of Hg cycling and to evaluate potential ecological risks of Hg in the lake. Mercury concentrations were measured in surficial sediments, sediment interstitial water, lake water, phytoplankton, zooplankton, benthic macroinvertebrates, and fishes (including planktivores, benthivores, and piscivores). The percentage of total Hg accounted for by methyl-Hg (CH3Hg) generally increased with higher trophic levels, confirming that CH3Hg is more efficiently transferred to higher trophic levels than is inorganic Hg. Concentrations of total Hg in amphipods and chironomids were closely related to concentrations of total Hg in sediments, suggesting that sediments are a likely source of Hg for benthic macro-invertebrates. Mercury concentrations in edible muscle tissue (fillets) of lake fishes have declined substantially from values found in the early 1970s, reflecting the large reductions in Hg discharges to the lake that have occurred since that time. The CH3Hg concentrations in fillets and whole bodies of fishes generally were similar, indicating that concentrations in fillets often can provide estimates of concentrations in whole bodies. Methyl-Hg concentrations and bioaccumulation factors increased with higher trophic levels in both the pelagic and benthic components of the lake food web.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.