Abstract

The effect of small liquid droplets on the flow structure of an axially symmetrical turbulent air jet was studied. The flux of the droplets was measured and correlated by a normal-distribution curve with a spreading coefficient of 0.05. Distributions of time-average and fluctuating longitudinal velocities were measured and correlated. In general the two-phase jet is narrower than the single-phase one, with smaller normalized velocity fluctuations. Studies of the spectra and probability density functions indicated that the discontinuous phase causes suppression of turbulence in the dissipation range, namely at high wave numbers. This effect is proportional to the droplets’ concentration in the investigated range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.