Abstract

Immunocytochemical staining procedures using the HRP-complexed antibody to protein kinase C (PKC) have been carried out on the turtle retina. Wholemounts and frozen sections of retina have been studied by light microscopy to evaluate PKC immunoreactivity after stimulation of the retina with light and neurotransmitters known to be active in the vertebrate retina. The most dramatically stained sites are cone synaptic pedicles and bipolar cells under all conditions. Ganglion cells stain weakly under certain conditions. Applying the antibody to a ‘control’ retina under dark adapted conditions results in uniform background staining of both hyperpolarizing and depolarizing bipolar pathways, while stimulating the retina with K + under dim light conditions results in discretely stained bipolar cells and a prominent band of staining in stratum 4 of the inner plexiform layer. Stronger stimulation of bipolar cells with their terminals contributing to strata 3 and 4 and the continuous dominant band in stratum 4 can be elicited with incubation of the retina in neurotransmitter agonists, GABA and dopamine. Incubation with dopamine, in particular, brings out the putative dopaminergic amacrine cell. The only condition in which a strong band in stratum 2 can be demonstrated is under stimulation with a flashing bar or spot of light. Thus K + and neurotransmitter stimulation elicit PKC staining in neurons contributing to the ON or depolarizing sublamina of the IPL, while intermittent flashing light stimulus is required to elicit PKC staining in the OFF or hyperpolarizing sublamina of the IPL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.