Abstract
<p>Floods rarely occur in hyper-arid deserts and little is known about the magnitude and frequency of sediment delivery from their basins, despite their importance to changes to the landscape as well as to infrastructures and engineering activities. Sediment yield from the Nahal Nehushtan watershed (15.7 km<sup>2</sup>) located in the Timna Valley in southern Israel, was determined by assessing stratigraphic sections in its 60-year reservoir deposits. Stratigraphic correlation between event couplets allowed quantification of sediment yields representing 13 former flash-flood events. Based on the sediment volume in the reservoir, the 24.6 t km<sup>-2</sup> y<sup>-1</sup> average sediment yield is the lowest among other studied warm deserts. Among the event layers, five are voluminously small and seven are medium-sized. The thickest layer, deposited by a flash flood caused by a single short rain event, contributed 29% of the total sediment yield. This demonstrates the overarching effect of medium magnitude events on the rate of sediment production in a hyper-arid setting. Based on event reservoir sedimentation from watersheds located in several hyper-arid areas in the Middle East and North America, sediment load increases with drainage area as expected; however, sediment yield does not decrease with drainage area, as was shown for arid environments. Overall, mean annual sediment yield is very low and increases with flood frequency, with considerable variation generated by local characteristics. Our quantitative results together with previous studies of hyper-arid areas, provide complementary evidence of fluvial sediment transport - the main landscape designer in fluvial desert landscapes.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.