Abstract

We investigate energy distribution in cable networks using random coupling model (RCM). RCM is used to model the propagation of microwaves in large complicated cavities. The model is made up of two main parts where one part is deterministic and the other is purely statistical. Both parts have been modelled using Quantum Graph (QG) theory and the properties of field quantities are presented. The effects of various boundary conditions on the behaviour of microwaves is discussed. Fourier boundary conditions at graph nodes, high loss regime (α > 1), and weakly coupled graphs ensures that QG model qualifies as an analogue of standard RCM. For Neumann boundary conditions, significant deviations from RCM are found. Analytical expressions of both the deterministic and the statistical parts are presented and shown to accurately predict the distribution of the latter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.