Abstract

Ubiquinone (coenzyme Q10), in addition to its function as an electron and proton carrier in mitochondrial electron transport coupled to ATP synthesis, acts in its reduced form (ubiquinol) as an antioxidant, inhibiting lipid peroxidation in biological membranes and protecting mitochondrial inner-membrane proteins and DNA against oxidative damage accompanying lipid peroxidation. Tissue ubiquinone levels are subject to regulation by physiological factors that are related to the oxidative activity of the organism: they increase under the influence of oxidative stress, e.g. physical exercise, cold adaptation, thyroid hormone treatment, and decrease during aging. In the present study, coenzyme Q homologues were separated and quantified in the brains of mice, rats, rabbits, and chickens using high-performance liquid chromatography. In addition, the coenzyme Q homologues were measured in cells such as NG-108, PC-12, rat fetal brain cells and human SHSY-5Y and monocytes. In general, Q1 content was the lowest among the coenzyme homologues quantified in the brain. Q9 was not detectable in the brains of chickens and rabbits, but was present in the brains of rats and mice. Q9 was also not detected in human cell lines SHSY-5Y and monocytes. Q10 was detected in the brains of mice, rats, rabbits, and chickens and in cell lines. Since both coenzyme Q and vitamin E are antioxidants, and coenzyme Q recycles vitamins E and C, vitamin E was also quantified in mice brain using HPLC-electrochemical detector (ECD). The quantity of vitamin E was lowest in the substantia nigra compared with the other brain regions. This finding is crucial in elucidating ubiquinone function in bioenergetics; in preventing free radical generation, lipid peroxidation, and apoptosis in the brain; and as a potential compound in treating various neurodegenerative disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.