Abstract

Thermal polymerization of pentabromobenzylacrylate (PBBMA) in a polypropylene (PP) composite that contains glass fibers and magnesium hydroxide has been studied using scanning and transmission electron microscopy techniques coupled with energy-dispersive spectrometry. The addition of PBBMA imparts flame retardant (FR) properties to the PP composite but also affects adversely its mechanical properties. It is of practical importance to determine the spatial distribution and the extent of polymerization of the FR in the PP composite in order to understand better its role in the system. The methods presented here allow the distinction between the monomeric and polymeric forms of the FR and to determine their spatial distributions. PP itself shows poor adhesion to the glass fibers, which may be improved by the addition of the reactive PBBMA. The latter is polymerized during reactive extrusion through an antimony-catalyzed reaction. Antioxidant hinders self-thermal polymerization but the presence of antimony overcomes this interference. PP shows good adhesion to sized Mg(OH) 2 as expected from a properly surface-treated filler.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.