Abstract

Distribution centers site selection has become a popular problem in recent years. Fine distribution centers site selection can ensure the supply and reduce the cost. By studying the methods proposed by other scholars, a mew method, KPCA (kernel principal component analysis) -SVRM (support vector regression machine) is proposed by this paper. The first step of this method is to apply KPCA to SVRM for feature extraction. KPCA first maps the original inputs into a high dimensional feature space using the kernel method and then calculates PCA in the high dimensional feature space. These new features are then used as the inputs of SVRM to solve the site selection problem. By learning and training, we use the data of this subset to get the solution and find interrelationship of input and output by the SVRM. Practical examples are cited in this paper to illustrate the process. The KPCA-SVRM method can also be used to solve other selection and decision problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.