Abstract

A new approach to solving the distributed control problem for a class of discrete-time nonlinear systems via a wireless neural control network (WNCN) is presented in this paper. A unified Lurie-type model termed delayed standard neural network model (DSNNM) is used to describe these nonlinear systems. We assume that all neuron nodes in WNCN which have limited energy, storage space, and computing ability can be regarded as a subcontroller, then the whole WNCN is characterized by a mesh-like structure with partially connected neurons distributed over a wide geographical area, which can be considered as a fully distributed nonlinear output feedback dynamic controller. The unreliable wireless communication links within WNCN are modeled by fading channels. Based on the Lyapunov functional and the S-procedure, the WNCN is solved and configured for the DSNNM to absolutely stabilize the whole closed-loop system in the sense of mean square with aH∞disturbance attenuation index using LMI approach. A numerical example shows the effectiveness of the proposed design approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.