Abstract

AbstractA physically based distributed slope stability model is described that utilizes a combined surface–subsurface kinematic wave module to assess groundwater fluctuations related to slope stability. A total of 82 major rainstorms from 1972 to 1990 in Carnation Creek, British Columbia, were examined to determine the influence of different characteristics of rainstorms (such as mean and maximum hourly intensity, duration, and rainfall amount) on the slope stability. These rainstorms vary in mean intensity from 1·6 to 11·2 mm h−1, storm duration from 11 to 93 h, and maximum hourly intensity from 3·4 to 35 mm h−1. Four synthetic ‘uniform intensity’ rainstorms were also tested against real storms to assess the effect of short‐term hourly rainfall intensity peaks on landslide occurrence. Altogether, 602 simulations were conducted. The combined influence of mean and maximum hourly intensity, duration, and total rainfall amount of rainstorms were important in generating landslides. The temporal distribution of short‐term intensity also influenced the landslide occurrence. When saturated hydraulic conductivity of the soil was lowered or soil depth was raised, most rainstorms produced larger numbers of landslides. For the most part, actual rainstorms produced less stable conditions than their synthetic ‘uniform intensity’ counterparts. For all landslide‐producing storms, slope failure usually occurred after some threshold of cumulative rainfall and maximum hourly rainfall intensity. These simulations provide insights into the distributed behaviour of landslide occurrence during large rainstorms with varying characteristics. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.