Abstract

In this paper, we study the robust global containment control problem for second-order multiagent systems with bounded input disturbances subject to input saturation under general directed communication graphs. Two types of distributed controllers based on novel sliding mode control ideas are respectively proposed to solve the globally asymptotic containment problem for multiagent systems with static leaders and the practical containment problem for the case with dynamic leaders subject to unknown control inputs. One distinctive feature of the proposed controllers is that only local velocity measurements, relative position, and velocity measurements are involved in designing the controllers, which thus effectively reduces the information transmission burden among the agents for real-time implementation. Another favorable property of the designed controllers is that the global information such as the spectrum of the graph Laplacian matrix is not required in designing these controllers under general directed communication graphs. Simulations on containment control of multiple quadrotors are performed to illustrate the effectiveness of the proposed containment controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.