Abstract
SummaryThis article is concerned with the distributed H∞ resilient state estimation problem for a class of nonlinear systems with randomly occurring communication delays and missing measurements in sensor networks. A novel sensor model is proposed, in which two Bernoulli distributed white sequences are introduced to describe the random communication delay and missing measurements in a unified framework. Meanwhile, the estimator gain is allowed to fluctuate within a certain range. Based on the developed model, a novel Lyapunov–Krasovskii functional with multiple delay information terms is constructed, then the stochastic analysis technique and the extended integral inequality are used to calculate the functional derivative. Consequently, the existence conditions for the required distributed estimator are established to ensure that the estimation error system is asymptotically mean‐square stable and satisfies the prescribed H∞ performance constraint, and the desired gain of distributed resilient estimator is also solved by linearizing the nonlinear terms. Finally, a numerical example is given to illustrate the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Adaptive Control and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.