Abstract

In this paper, we propose the distributed predictive control strategies of spiral wave in cardiac excitable media. The modified FitzHugh–Nagumo model was used to express the cardiac excitable media approximately. Based on the control-Lyapunov theory, we obtained the distributed control equation, which consists of a positive control-Lyapunov function and a positive cost function. Using the equation, we investigate two kinds of robust control strategies: the time-dependent distributed control strategy and the space-time dependent distributed control strategy. The feasibility of the strategies was demonstrated via an illustrative example, in which the spiral wave was prevented to occur, and the possibility for inducing ventricular fibrillation was eliminated. The strategies are helpful in designing various cardiac devices. Since the second strategy is more efficient and robust than the first one, and the response time in the second strategy is far less than that in the first one, the former is suitable for the quick-response control systems. In addition, our spatiotemporal control strategies, especially the second strategy, can be applied to other cardiac models, even to other reaction-diffusion systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.