Abstract

In this paper, we present a set of distributed algorithms for estimating the electro-mechanical oscillation modes of large power system networks using synchrophasors. With the number of phasor measurement units (PMUs) in the North American grid scaling up to the thousands, system operators are gradually inclining toward distributed cyber-physical architectures for executing wide-area monitoring and control operations. Traditional centralized approaches, in fact, are anticipated to become untenable soon due to various factors such as data volume, security, communication overhead, and failure to adhere to real-time deadlines. To address this challenge, we propose three different communication and computational architectures by which estimators located at the control centers of various utility companies can run local optimization algorithms using local PMU data, and thereafter communicate with other estimators to reach a global solution. Both synchronous and asynchronous communications are considered. Each architecture integrates a centralized Prony-based algorithm with several variants of alternating direction method of multipliers (ADMM). We discuss the relative advantages and bottlenecks of each architecture using simulations of IEEE 68-bus and IEEE 145-bus power system, as well as an Exo-GENI-based software defined network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.