Abstract

AbstractWe present a new method for secure two-party Random Access Memory (RAM) program computation that does not require taking a program and first turning it into a circuit. The method achieves logarithmic overhead compared to an insecure program execution.In the heart of our construction is a new Oblivious RAM construction where a client interacts with two non-communicating servers. Our two-server Oblivious RAM for n reads/writes requires O(n) memory for the servers, O(1) memory for the client, and O(logn) amortized read/write overhead for data access. The constants in the big-O notation are tiny, and we show that the storage and data access overhead of our solution concretely compares favorably to the state-of-the-art single-server schemes. Our protocol enjoys an important feature from a practical perspective as well. At the heart of almost all previous single-server Oblivious RAM solutions, a crucial but inefficient process known as oblivious sorting was required. In our two-server model, we describe a new technique to bypass oblivious sorting, and show how this can be carefully blended with existing techniques to attain a more practical Oblivious RAM protocol in comparison to all prior work.As alluded above, our two-server Oblivious RAM protocol leads to a novel application in the realm of secure two-party RAM program computation. We observe that in the secure two-party computation, Alice and Bob can play the roles of two non-colluding servers. We show that our Oblivious RAM construction can be composed with an extended version of the Ostrovsky-Shoup compiler to obtain a new method for secure two-party program computation with lower overhead than all existing constructions.KeywordsOblivious RAMCloud ComputingMulti-Server ModelSoftware ProtectionSecure Computation

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.