Abstract

The ability to recover a low-rank matrix from a subset of its entries is the leitmotif of recent advances for localization of wireless sensors, unveiling traffic anomalies in backbone networks, and preference modeling for recommender systems. This paper develops a distributed algorithm for low-rank matrix completion over networks. While nuclear-norm minimization has well-documented merits when centralized processing is viable, the singular-value sum is non-separable and this challenges its minimization in a distributed fashion. To overcome this limitation, an alternative characterization of the nuclear norm is adopted which leads to a separable, yet non-convex cost that is minimized via the alternating-direction method of multipliers. The novel distributed iterations entail reduced-complexity per node tasks, and affordable message passing between single-hop neighbors. Interestingly, upon convergence the distributed (non-convex) estimator provably attains the global optimum of its centralized counterpart, regardless of initialization. Simulations corroborate the convergence of the novel distributed matrix completion algorithm, and its centralized performance guarantees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.