Abstract

Large interconnected systems consist of a multitude of subsystems with their own dynamics, but coupled with each other via input-output connections. Each subsystem is typically modelled by ordinary differential equations or differential-algebraic equations. Simulation and optimal control of such systems pose a challenge both with respect to CPU time and memory requirements. We address optimal control of such systems by applying “distributed multiple shooting”, a generalization of the direct multiple shooting method, which uses the decomposable structure of the system in order to obtain a highly parallel algorithm. The interconnections are allowed to be infeasible during the iterations but are driven to feasibility by a Newtontype optimization algorithm. We evaluate the performance of the distributed multiple shooting method on a large scale estimation problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.