Abstract

This paper investigates the exponential synchronization of nonidentically coupled Lur'e dynamical networks with proportional delay. Since the heterogeneities existed in different Lur'e systems, quasi-synchronization rather than complete synchronization is thus discussed. Different from general time delay, the proportional delay is a type of unbounded time-varying delay, which tremendously increases the requirements on network synchronization. Based on distributed impulsive pinning control protocol and different roles that impulsive effects play, the criteria for quasi-synchronization of nonidentically coupled Lur'e dynamical networks are derived by jointly applying the delayed impulsive comparison principle, the extended formula for the variation of parameters, and the definition of an average impulsive interval. Moreover, synchronization errors for different impulsive effects with different functions are evaluated and simultaneously, the corresponding exponential convergence rates are obtained. In addition, three numerical examples are presented to illustrate the validity of the control scheme and the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.