Abstract

This paper develops an improved distributed finite-time control algorithm for multiagent-based ac microgrids with battery energy storage systems (BESSs) utilizing a low-width communication network. The proposed control algorithm can simultaneously coordinate BESSs to eliminate any deviation from the nominal frequency as well as solving state of charge (SoC) balancing problem. The stability of the proposed control algorithm is established using Lyapunov method and homogeneous approximation theory, which guarantees an accelerated convergence within a settling time that does not dependent on initial conditions. Based on this, to significantly reduce the communication burdens, an event-triggered communication mechanism is designed which can also avoid Zeno behavior. Then sufficient conditions on the event-triggered boundary are derived to guarantee the stability and reliability of the whole systems. Practical local constraints are imposed to implement the control protocol, and the theoretical results are applied to a test system consisting of five DGs and five BESSs, which verifies the effectiveness of the proposed strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.