Abstract
Wind gusts are significant barriers to the outdoor operations of networked multiple unmanned aerial vehicles (UAVs), which fly in close proximity to each other or around obstacles. As such, traditional control methods such as PID control may not perform adequately. Based on the strictly negative imaginary (SNI) systems theory, this article presents a novel decentralized and adaptive consensus-based formation control law that drives multiple UAVs to follow the desired formation in the presence of limited bandwidth for information exchange and dynamically changing environmental conditions. To be consistent with a decentralized approach, each UAV only measures its relative position with respect to its neighbors according to a fixed information graph. As a result, the required formation is obtained by maintaining the desired relative positions among UAVs. Moreover, to deal with the challenging dynamics of flight environments, we also employ a knowledge-based fuzzy inference system to automatically adjust the parameters of the SNI consensus controllers, leading to the development of a fast and robust adaption method. In this article, we conduct a stability analysis based on the SNI theorem and rigorously compare the performance of our controllers with respect to the performance of conventional PID controllers. The efficacy of the overall closed loop control system is highlighted in real-time flight tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.