Abstract

This paper introduces novel reinforcement learning agent-based solutions to the problems of call admission control (CAC) and dynamic channel allocation (DCA) in multi-cellular telecommunications environments featuring multi-class traffic and intercell handoffs. Both agents providing the CAC and DCA functionality make use of an on-policy reinforcement learning technique known as SARSA and are designed to be implemented at the cellular level in a distributed manner. Furthermore, both are capable of on-line learning without any initial training period. Both of the reinforcement learning agents are examined via computer simulations and are shown to provide superior results in terms of call blocking probabilities and revenue raised under a variety of traffic conditions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.