Abstract

Cooperative spectrum sensing has been shown to yield a significant performance improvement in cognitive radio networks. In this paper, we consider distributed cooperative sensing (DCS) in which secondary users (SUs) exchange data with one another instead of reporting to a common fusion center. In most existing DCS algorithms, the SUs are grouped into disjoint cooperative groups or coalitions, and within each coalition the local sensing data is exchanged. However, these schemes do not account for the possibility that an SU can be involved in multiple cooperative coalitions thus forming overlapping coalitions. Here, we address this problem using novel techniques from a class of cooperative games, known as overlapping coalition formation games, and based on the game model, we propose a distributed DCS algorithm in which the SUs self-organize into a desirable network structure with overlapping coalitions. Simulation results show that the proposed overlapping algorithm yields significant performance improvements, decreasing the total error probability up to 25% in the Q <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> + Q <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</sub> criterion, the missed detection probability up to 20% in the Q <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> /Q <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</sub> criterion, the overhead up to 80%, and the total report number up to 10%, compared with the state-of-the-art non-overlapping algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.