Abstract

We demonstrate a novel platform for mapping the pressure distribution of complex microfluidics networks with high spatial resolution. Our approach utilizes colorimetric interferometers enabled by lossy optical resonant cavities embedded in a silicon substrate. Detection of local pressures in real-time within a fluid network occurs by monitoring a reflected color emanating from each optical cavity. Pressure distribution measurements spanning a 1 cm2 area with a spatial resolution of 50 μm have been achieved. We applied a machine-learning-assisted sensor calibration method to generate a dynamic measurement range from 0 to 5.0 psi, with 0.2 psi accuracy. Adjustments to this dynamic measurement range are possible to meet different application needs for monitoring flow conditions in complex microfluidics networks, for the timely detection of anomalies such as clogging or leakage at their occurring locations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.