Abstract

Brillouin dynamic gratings (BDG) can measure the distributed birefringence of polarization-maintaining fibers (PMF), however, its sensing range is limited by both stimulated Brillouin scattering depletion and fiber losses in PMF, which are significantly higher than those in standard single-mode fibers. In this work, we theoretically and experimentally verify that BDG can be sustained over ultra-long distances when assisted by distributed Brillouin amplification, significantly extending the distributed birefringence measurement distance. Using an optical frequency comb pumped by a narrow linewidth laser to both generate and interrogate the amplified BDG, a birefringence measurement accuracy of 7.5 × 10-9 was achieved over 7 km sensing length, more than double the longest range reported. This opens a new opportunity to investigate small birefringence changes due to nonlinear optics effects and monitoring fiber network security from eavesdropping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.