Abstract

The Internet explosion and the increase in crucial web applications such as ebanking and e-commerce, make essential the need for network security tools. One of such tools is an Intrusion detection system which can be classified based on detection approachs as being signature-based or anomaly-based. Even though intrusion detection systems are well defined, their cooperation with each other to detect attacks needs to be addressed. Consequently, a new architecture that allows them to cooperate in detecting attacks is proposed. The architecture uses Software Agents to provide scalability and distributability. It works in two modes: learning and detection. During learning mode, it generates a profile for each individual system using a fuzzy data mining algorithm. During detection mode, each system uses the FuzzyJess to match network traffic against its profile. The architecture was tested against a standard data set produced by MIT's Lincoln Laboratory and the primary results show its efficiency and capability to detect attacks. Finally, two new methods, the memory-window and memoryless-window, were developed for extracting useful parameters from raw packets. The parameters are used as detection metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.