Abstract

With current techniques, experimental measurements alone cannot characterize the effects of oxygen blood-tissue diffusion on muscle oxygen uptake (Vo₂) kinetics in contracting skeletal muscle. To complement experimental studies, a computational model is used to quantitatively distinguish the contributions of convective oxygen delivery, diffusion into cells, and oxygen utilization to Vo₂ kinetics. The model is validated using previously published experimental Vo₂ kinetics in response to slowed blood flow (Q) on-kinetics in canine muscle (τQ = 20 s, 46 s, and 64 s) [Goodwin ML, Hernández A, Lai N, Cabrera ME, Gladden LB. J Appl Physiol. 112:9-19, 2012]. Distinctive effects of permeability-surface area or diffusive conductance (PS) and Q on Vo₂ kinetics are investigated. Model simulations quantify the relationship between PS and Q, as well as the effects of diffusion associated with PS and Q dynamics on the mean response time of Vo₂. The model indicates that PS and Q are linearly related and that PS increases more with Q when convective delivery is limited by slower Q dynamics. Simulations predict that neither oxygen convective nor diffusive delivery are limiting Vo₂ kinetics in the isolated canine gastrocnemius preparation under normal spontaneous conditions during transitions from rest to moderate (submaximal) energy demand, although both operate close to the tipping point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.