Abstract

We consider two different optimized measurement strategies for the discrimination of nonorthogonal quantum states. The first is conclusive discrimination with a minimum probability of inferring an erroneous result, and the second is unambiguous, i. e. error-free, discrimination with a minimum probability of getting an inconclusive outcome, where the measurement fails to give a definite answer. For distinguishing between two mixed quantum states, we investigate the relation between the minimum error probability achievable in conclusive discrimination, and the minimum failure probability that can be reached in unambiguous discrimination of the same two states. The latter turns out to be at least twice as large as the former for any two given states. As an example, we treat the case that the state of the quantum system is known to be, with arbitrary prior probability, either a given pure state, or a uniform statistical mixture of any number of mutually orthogonal states. For this case we derive an analytical result for the minimum probability of error and perform a quantitative comparison to the minimum failure probability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.