Abstract

We demonstrated a scheme to differentiate the high-harmonic generation (HHG) originating from the surface states and bulk states of the topological insulator Bi2Se3. By adopting two-color mid-infrared laser fields on Bi2Se3, we found that the nonlinear response sensitively depends on the relative phase of the driving fields. The even harmonics arise from the surface states with a clear signature, whose modulation period equals the cycle of the second-harmonic generation (SHG) field. We reveal that the weak SHG perturbs the nontrivial dipole phase of the electron-hole pair in surface states, and thus leads to the modulation of HHG. It provides a means to manipulate the ultrafast dynamics in surface states through adopting a weak perturbing laser field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.