Abstract

We demonstrate that the static ground state atom, which interacts with a conformally coupled massless scalar field in the de Sitter invariant vacuum, can obtain a position-dependent energy-level shift and this shift could cause a Casimir-Polder-like force on it. Interestingly no such force arises on the inertial atom bathed in a thermal radiation in the Minkowski universe. Thus, although the energy-level shifts of the static atom for these two cases are structurally the same, whether the energy-level shift causes the Casimir-Polder-like force, in principle, could be as an indicator to distinguish de Sitter universe from the thermal Minkowski spacetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.