Abstract
The BRAG/IQSEC is a family of guanine nucleotide exchange factors for ADP ribosylation factors, small GTPases that regulate membrane trafficking and actin cytoskeleton, and comprises three structurally related members (BRAG1-3) generated from different genes. In the mouse retina, BRAG1 (also known as IQSEC2) was previously shown to localize at synaptic ribbons of photoreceptor terminals and to form a protein complex with RIBEYE. In this study, we examined the immunohistochemical localization of BRAG2 (IQSEC1) and BRAG3 (IQSEC3) in the adult mouse retina at the light and electron microscopic levels. In the outer plexiform layer, BRAG2 showed a punctate distribution in intimate association with dystrophin and β-dystroglycan. Immunoelectron microscopic analysis revealed that BRAG2 localized at specific subcompartments of photoreceptor terminals in both rod spherules and cone pedicles. In the inner plexiform layer, immunolabeling for both BRAG2 and BRAG3 had a punctate appearance, suggestive of synaptic labeling. Double immunostaining demonstrated that BRAG2 colocalized preferentially with PSD-95 and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type glutamate receptors (AMPARs). By contrast, BRAG3 colocalized with gephyrin and a subpopulation of inhibitory synapses expressing glycine receptors or γ-aminobutyric acid type A receptors (GABA(A) Rs). Immunoelectron microscopic analysis revealed that BRAG2 localized to postsynaptic processes at bipolar dyads, while BRAG3 localized to postsynaptic components at conventional synapses. These findings suggest that BRAG/IQSEC family members have key roles in the function and organization of distinct excitatory and inhibitory synapses in the retina.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.