Abstract
P(II)-like signal transmitter proteins, found in Bacteria, Archaea, and plants, are known to mediate control of carbon and nitrogen assimilation. They indirectly regulate the activity of key metabolic enzymes and transcription factors by protein-protein interactions with signal transduction proteins. Many Proteobacteria harbor two paralogous P(II)-like proteins, GlnB and GlnK, whereas a novel third P(II) paralogue (GlnY) was recently identified in Azoarcus sp. strain BH72, a diazotrophic endophyte of grasses. In the present study, evidence was obtained that the P(II)-like proteins have distinct roles in mediating nitrogen and oxygen control of nif gene transcription and nitrogenase activity. Full repression of nif gene transcription in the presence of a combined nitrogen source or high oxygen concentrations was observed in wild-type and glnB and glnK knockout mutants, revealing that GlnB and GlnK can complement each other in mediating the repression. In contrast, in a glnBK double mutant strain in the presence of only GlnY, nif gene transcription was still detectable, albeit at a lower level, on nitrate or 20% oxygen. As another level of control, nitrogenase activity was regulated by at least three types of mechanisms in strain BH72: covalent modification of dinitrogenase reductase (NifH), probably by ADP-ribosylation, and two other, unknown means. Functional inactivation upon ammonium addition (switch-off) required the putative high-affinity ammonium transporter AmtB and GlnK, but not GlnB or GlnY. Functional inactivation in response to anaerobiosis did not depend on AmtB, GlnK, or GlnB. In contrast, covalent modification of NifH required both GlnB and GlnK and AmtB as response to ammonium addition, whereas it required either GlnB or GlnK and not AmtB when cells were shifted to anaerobiosis. In a glnBK double mutant expressing only GlnY, NifH modification was completely abolished, further revealing functional differences between the three P(II) paralogues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.