Abstract

Astrocytes of the mouse neocortex express functional NMDA receptors, which are not blocked by Mg(2+) ions. However, the pharmacological profile of glial NMDA receptors and their subunit composition is far from complete. We tested the sensitivity of NMDA receptor-mediated currents to the novel GluN2C/D subunit-selective antagonist UBP141 in mouse cortical astrocytes and neurons. We also examined the effect of memantine, an antagonist that has substantially different affinities for GluN2A/B and GluN2C/d-containing receptors in physiological concentrations of extracellular Mg(2+). UBP141 had a strong inhibitory action on NMDA receptor-mediated transmembrane currents in the cortical layer II/III astrocytes with an IC(50) of 2.29 µM and a modest inhibitory action on NMDA-responses in the pyramidal neurons with IC(50) of 19.8 µM. Astroglial and neuronal NMDA receptors exhibited different sensitivities to memantine with IC(50) values of 2.19 and 10.8 µM, respectively. Consistent with pharmacological differences between astroglial and neuronal NMDA receptors, NMDA receptors in astrocytes showed lower Ca(2+) permeability than neuronal receptors with P(Ca) /P(Na) ratio of 3.4. The biophysical and pharmacological properties of the astrocytic NMDA receptors strongly suggest that they have a tri-heteromeric structure composed of GluN1, GluN2C/D and GluN3 subunits. The substantial difference between astroglial and neuronal NMDA receptors in their sensitivity to UBP141 and memantine may enable selective modulation of astrocytic signalling that could be very helpful for elucidating the mechanisms of neuron-glia communications. Our results may also provide the basis for the development of novel therapeutic agents specifically targeting glial signalling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.