Abstract

To clarify the physiological significance of myosin isoform redistribution in cardiac adaptation process, we compared the kinetic property of the two cardiac myosin isoforms using in vitro motility assay techniques. Cardiac myosin isoforms V1 and V3 were obtained from ventricular muscle of young rats and hypothyroid rats respectively. On each of these myosin isoforms fixed on a glass coverslip, fluorescently labeled actin filaments were made to slide in the presence of ATP. To measure the force generated by actomyosin interaction, a small latex bead was attached to the barbed end of an actin filament and the bead was captured by the laser optical trap installed in a microscope. The force was determined from the distance between the bead and the trap positions under either auxotonic or isometric conditions. The time-averaged force generated by multiple cross-bridges did not differ significantly between the two isoforms. On the other hand, the unitary force measurement revealed the same level of amplitude but a longer duration for V3 isoform. The same level of time-averaged force is in agreement with not only our previous finding but the results of maximum force measurement in muscle preparations. The difference in kinetic characteristics of the two isoforms could account for the difference in economy of force development and the basis for cardiac adaptation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.