Abstract

Prp8 is the largest and most highly conserved protein in the spliceosome yet its mechanism of function is poorly understood. Our previous studies implicate Prp8 in control of spliceosome activation for the first catalytic step of splicing, because substitutions in five distinct regions (a-e) of Prp8 suppress a cold-sensitive block to activation caused by a mutation in U4 RNA. Catalytic activation of the spliceosome is thought to require unwinding of the U1 RNA/5' splice site and U4/U6 RNA helices by the Prp28 and Prp44/Brr2 DExD/H-box helicases, respectively. Here we show that mutations in regions a, d, and e of Prp8 exhibit allele-specific genetic interactions with mutations in Prp28, Prp44/Brr2, and U6 RNA, respectively. These results indicate that Prp8 coordinates multiple processes in spliceosome activation and enable an initial correlation of Prp8 structure and function. Furthermore, additional genetic interactions with U4-cs1 support a two-state model for this RNA conformational switch and implicate another splicing factor, Prp31, in Prp8-mediated spliceosome activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.