Abstract

Thorup and Zwick, in the seminal paper [Journal of ACM, 52(1), 2005, pp 1-24], showed that a weighted undirected graph on n vertices can be preprocessed in subcubic time to design a data structure which occupies only subquadratic space, and yet, for any pair of vertices, can answer distance query approximately in constant time. The data structure is termed as approximate distance oracle. Subsequently, there has been improvement in their preprocessing time, and presently the best known algorithms [4,3] achieve expected O(n 2) preprocessing time for these oracles. For a class of graphs, these algorithms indeed run in Θ(n 2) time. In this paper, we are able to break this quadratic barrier at the expense of introducing a (small) constant additive error for unweighted graphs. In achieving this goal, we have been able to preserve the optimal size-stretch trade offs of the oracles. One of our algorithms can be extended to weighted graphs, where the additive error becomes 2 ·w max (u,v) - here w max (u,v) is the heaviest edge in the shortest path between vertices u, v.KeywordsShort PathWeighted GraphApproximate DistanceConsecutive VertexQuery AlgorithmThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.