Abstract

The study of of the distribution of microorganisms through space (and time) allows evaluation of biogeographic patterns, like the species-area index (z). Due to their high dispersal ability, high reproduction rates and low rates of extinction microorganisms tend to be widely distributed, and they are thought to be virtually cosmopolitan and selected primarily by environmental factors. Recent studies have shown that, despite these characteristics, microorganisms may behave like larger organisms and exhibit geographical distribution. In this study, we searched patterns of spatial diversity distribution of bacteria and archaea in a contiguous environment. We collected 26 samples of a lake sediment, distributed in a nested grid, with distances between samples ranging from 0.01 m to 1000 m. The samples were analyzed using T-RFLP (Terminal restriction fragment length polymorphism) targeting mcrA (coding for a subunit of methyl-coenzyme M reductase) and the genes of Archaeal and Bacterial 16S rRNA. From the qualitative and quantitative results (relative abundance of operational taxonomic units) we calculated the similarity index for each pair to evaluate the taxa-area and distance decay relationship slopes by linear regression. All results were significant, with mcrA genes showing the highest slope, followed by Archaeal and Bacterial 16S rRNA genes. We showed that the microorganisms of a methanogenic community, that is active in a contiguous environment, display spatial distribution and a taxa-area relationship.

Highlights

  • The biogeography concept is defined as the study of the distribution and the range of living organisms across space and time

  • The analysis of the methanogenic archaea (mcrA) T-RFLP profile resulted in a total of 18 different OTUs of methanogens throughout the lake area (Figure 2A) of which 5 OTUs were found at all sampling points (237 bp, 240 bp, 404 bp, 470 bp and 506 bp) and one OTU (63 bp), which was the least frequently retrieved OTU, was found at only 6 sampling points

  • The Bacterial 16S rRNA gene TRFLP profiles showed the largest number of OTUs among the different genes targeted with a total of 37 different OTUs found at all the sampling points across the lake area, showing a high diversity of dominant groups (Figure 2C)

Read more

Summary

Introduction

The biogeography concept is defined as the study of the distribution and the range of living organisms across space and time. A long-held concept in microbial ecology is that microorganisms are ubiquitously distributed and can be found in any habitat with favorable environmental conditions This concept was introduced by Martinus Willem Beijerinck and concisely summarized by Lourens Gerhard Marinus Baas Becking in the quote, ‘‘Everything is everywhere, the environment selects’’ [6]. This statement is based on some traits of the microorganisms, such as the small size of individuals and the consequent ease of their dispersal across long distances, high rates of reproduction, short generation times, and large population sizes, leading to a small chance of local extinction

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.